Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
EClinicalMedicine ; 59:101983-101983, 2023.
Article in English | EuropePMC | ID: covidwho-2296465

ABSTRACT

Background The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG;nucleocapsid protein (anti-N) IgG;neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains;and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4–12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4–12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, 10.13039/100016796Adaptive Biotechnologies, and the 10.13039/100000002National Institutes of Health.

2.
Transplant Cell Ther ; 28(10): 696.e1-696.e7, 2022 10.
Article in English | MEDLINE | ID: covidwho-1972232

ABSTRACT

Adult hematopoietic stem cell transplantation (HSCT) recipients are at a high risk of adverse outcomes after COVID-19. Although children have had better outcomes after COVID-19 compared to adults, data on risk factors and outcomes of COVID-19 among pediatric HSCT recipients are lacking. We describe outcomes of HSCT recipients who were ≤21 years of age at COVID-19 diagnosis and were reported to the Center for International Blood and Marrow Transplant Research between March 27, 2020, and May 7, 2021. The primary outcome was overall survival after COVID-19 diagnosis. We determined risk factors of COVID-19 as a secondary outcome in a subset of allogeneic HSCT recipients. A total of 167 pediatric HSCT recipients (135 allogeneic; 32 autologous HSCT recipients) were included. Median time from HSCT to COVID-19 was 15 months (interquartile range [IQR] 7-45) for allogeneic HSCT recipients and 16 months (IQR 6-59) for autologous HSCT recipients. Median follow-up from COVID-19 diagnosis was 53 days (range 1-270) and 37 days (1-179) for allogeneic and autologous HSCT recipients, respectively. Although COVID-19 was mild in 87% (n = 146/167), 10% (n = 16/167) of patients required supplemental oxygen or mechanical ventilation. The 45-day overall survival was 95% (95% confidence interval [CI], 90-99) and 90% (74-99) for allogeneic and autologous HSCT recipients, respectively. Cox regression analysis showed that patients with a hematopoietic cell transplant comorbidity index (HCT-CI) score of 1-2 were more likely to be diagnosed with COVID-19 (hazard ratio 1.95; 95% CI, 1.03-3.69, P = .042) compared to those with an HCT-CI of 0. Pediatric and early adolescent and young adult HSCT recipients with pre-HSCT comorbidities were more likely to be diagnosed with COVID-19. Overall mortality, albeit higher than the reported general population estimates, was lower when compared with previously published data focusing on adult HSCT recipients.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Adolescent , COVID-19/epidemiology , COVID-19 Testing , Child , Cohort Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Oxygen , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL